

Better HVAC Designs Using Autodesk CFD

Case Study: Airport Expansion Project

Dr. Munirajulu. M HEAD - CFD | @m_munirajulu

L&T Overview

Indian Multinational Conglomerate Company

L&T OVERVIEW

Prese

(India Hydrocarbon USA Infrastructure Europe Power GCC Process Industries Africa South-East Asia Defence

igh into a

sectors or

Technology (Construction) (Construct

Turnover

USD 21 billion

Order Book

USD 40 billion

Employees

85,000 +

Shareholders

1,000,000 +

L&T's Business Line

Business Lines

BUILDINGS & FACTORIES

COMMERCIAL & RESIDENTIAL

PUBLIC SPACES & AIRPORTS

IT , OFFICE SPACES & DATACENTER	RESIDENTIAL	HEALTH	AIRPORTS	PUBLIC SPACES	FACTORIES
 IT & Software Parks Office Buildings <u>Data Centers</u> R&D Centers 	 Elite Housing Affordable & Mass Housing 	 Hospitals Medical Colleges 	 Passenger Terminal Buildings Cargo 	 Convention Centers Metro Stations Shopping Malls 	 Light & Heavy Factories Cement Plants Warehouses

- Museums
- Educational

Institutions

• Hotels

Design Certified – Landmark Data Center

NPCI Data Center – Chennai- UPTIME INSTITUTE Certified for TIER IV Design

International Airports

Bangalore International Airport (T2)

Salalah International Airport

BUA : 1,048,000 sq. ft. Capacity : 2 MPPA Year of Completion : 2015

International Airports

Delhi International Airport

Mumbai International Airport

Project Description

International Airport Expansion

Airport – 3D view

Hyderabad International Airport

Airport expansion

34MPPA from 12 MPPA

Building levels

Level B	Staffroom, Plant, Medical rooms and Back of House Storage.		Level E	International arrivals and immigration concourse, domestic arrivals concourse, retail.
Level C	Level CGround Services, Plant and Baggage Handling System Bus gates domestic and International departure/arrival Operations Management Office.Level DAir Handling Unit Plant, International and domestic baggage claim area, Airport Village.		Level F	Check in hall, international and domestic departures concourse, retail.
			Level G	Offices(existing-not part of proposed expansion)
Level D			Level H	Offices(existing-not part of proposed expansion)

Airport – Arrival –Baggage reclaim expansion-Level D

Built-up area expanded by 21000 sq.m from 9000 sq.m

Airport – Departure–Check-in hall expansion – Level F

Built-up area expanded by 21000sq.m from 9000 sq. m

Air-conditioning design basis

- Outdoor design condition:
 - Summer season
 - 41.1 °C DBT
- Indoor design condition:
 - Operating temperature
 - 24±1 °C
- External heat gain :
 - Transmission load (U-values and outdoor temp)
 - \circ solar load
- Internal heat gain: People, equipment and lighting

Air-conditioning system

Chilled water-based system

- Centralized chilled water system
 - Chiller plant
 - VFD driven cooling towers
- Air distribution
 - Floor mounted air-handling units
 - Island binnacles
 - Air terminal devices jet nozzles/drum louvers (drum jet diffusers) /slot diffusers

Key Objectives

Key Learning Objectives

- Simulation best practices in Autodesk CFD
- Modelling strategies
- CFD results
- Opportunities for design optimization

Best Practices

AEC Simulation

Component characterization

Complex features simplified through characterization

- People
- Slot diffusers/ drum louvers

Important considerations are:

- Insight into physics of the problem
- Manufacturing specifications of the component
- Less detail without losing impact of the component on flow pattern and heat transfer

Component characterization

Diffusers (Image credit: Microgenesis)

Component characterization

People (Image credit: Microgenesis)

Human occupancy is modeled as :

- Air volume with height of 1.8m from floor
- Air volume assigned heat generated by occupants

Appropriate Physics

Mixed Convection

- Initially forced convection with "fixed" properties
- Local temperature gradients can lead to appreciable buoyancy effects
- Use "variable" air properties with gravity enabled to account for buoyancy

In this project, mixed convection approach is used to account for buoyancy in check-in hall/ departure hall of airport.

https://help.autodesk.com/view/SCDSE/2014/ENU/?guid=GUID-7BBB1E45-4469-4F90-8ED7-7756B04CEA80

Modeling Strategies

Airflow and heat transfer

Modeling strategies for airflow and heat transfer

- CAD/CFD model, component characterization
- Materials, boundary conditions
- Meshing
- Solver settings

CAD model

Check-in hall

Create CAD model in Revit

• Simplify geometrical details

(include major arch layout and interior –

check-in counters, service counters,

rooms, walls, floor, roof etc.)

• Add inlet and outlet extensions

CAD model- Diffusers (Jet/Slot)

DIMENSION DETAIL						
NOM	А	В	С	D	Е	F
200	268	198	94	208	138	40
280	345	275	132	283	140	40
320	395	318	160	328	190	42
400	468	397	224	407	224	46

Jet Diffusers

Slot	Diffusers
------	-----------

No. of Slots	в	С	D
1	40	76	56
2	48	115	94
3	117	153	133
4	155	192	171
5	194	230	210
6	232	269	248
7	271	307	287
8	309	346	325

Slot diffuser (characterized)

AUTODESK UNIVERSITY

Jet diffusers (nominal dia)

CAD model- Diffusers

Drum Louvers

CFD model – Diffusers (Jet)

CFD model – Diffusers (Drum louvers)

Fluid volume assigned air material

Fluid volume assigned air material

Air properties - variable

C Material Environment X						
Fixed	🔾 Fixed 📃 💽 Variable					
Use scenario	environment					
Properties for Air (variable) Environment: 101325 Pa, 19.85 Celsius (from scenario)						
Property	Value	Units	U Va	nderlying ariation		
Density	1.20473e-06	g/mm3	Eq	uation of State		
Viscosity	1.817e-05	Pa-s	Co	nstant		
Conductivity	2.563e-05	W/mm-K	Co	nstant		
Specific heat	1.004	J/g-K	Constant			
Cp/Cv	1.4	none	Constant			
Emissivity	1	none	Constant			
Wall roughness	0	millimeter	Constant			
Phase	0		Vapor Pressure			
0	[OK		Cancel		

Outlet grill material

Ma	terials		x
Pro	perty settings		
	Material	Edit	7
	Material DB Name	Default	
	Туре	Resistance	
	Name	Default_Resistance	
	Resistance Directions		
	Flow Direction	Global Z _	
	Normal Direction 1	Global X	
	Normal Direction 2	Global Y	
0	Apply	Remove Cancel	

Inlet jet diffusers – Baseline design

Boundary Conditions	×	
Property settings		
Туре	Volume Flow Rate	
Unit	ft3/min	
Time	Steady State	
Volume Flow Rate	1211	
Direction	Reverse Normal	
Fully Developed		
Apply	Remove Cancel	
Boundary Conditions	x	
Property settings		
Туре	Temperature	
Unit	Celsius	
Time	Steady State	
Spatial Variations	Constant	
Temperature	14	
Static / Total	Static	
Apply	Remove Cancel	

Inlet slot diffusers - Characterization

Based on the diffuser performance specifications availability, hand calculations can be used to capture the component velocities given some of the following information:

- Angle of flow leaving diffuser
- Incoming flow rate
- Area that the flow will be coming from

Slot Diffusers modeled

Detailed Slot Diffusers

simplified to an opening

Inlet slot diffusers— Velocity results comparison

Detailed model vs characterized version

Inlet slot diffusers— Use of characterization

Inlet velocity converted to components based on diffuser angle to get required flow direction and CFM $$Vx=0.66\ m/s$$

Outlets

Boundary Conditions ×						
Property settings						
Туре	Pressure					
Unit	Pa					
Time	Steady State					
Pressure	0					
Gage / Absolute	Gage					
Static / Total	Static					
Apply	/ Remove Cancel					

Solar, equipment and occupancy

Lighting load

Applied on bottom of ceiling

Meshing

Uniform mesh at inlets and fine mesh at jet diffuser inlets

Air properties – fixed, ISC- on

Advection - 5

Air properties - variable, ISC - Off

Gravity – enabled

Solve				2
Control	Physics	Adaptation		
Flow				
Compressibility			Incompressible	
Hydrostatic Pressure				
Heat	Transfer			
Auto Forced Convection				
Radiation				
Gravi	ty Method		Earth	
Gravity Direction			0,0,-1	
Turbule	nce	Advanced	Solar heating	Free surface
0				Solve

Gravity enabled to account for buoyancy effects

CFD results

Temperature and air flow velocity

Flow pattern– Drum louvers (Baggage reclaim)

Velocity results – Baseline design (Baggage reclaim)

(1) Velocity Magnitude - m/s

0.250.210.180.150.120.09 0.060.03

Temperature results – Baseline design (Baggage reclaim)

Velocity results – Optimized design (Baggage reclaim)

(1) Velocity Magnitude - m/s

0.250.210.180.150.120.09 0.060.03

Temperature results – Optimized design (Baggage reclaim)

Velocity results- Baseline design (Check-in hall)

Temperature results – Baseline design (Check-in hall)

Velocity results – Optimized design (Check-in hall)

0.250.210.180.150.120.09 0.06 0.03 0

(1) Velocity Magnitude - m/s

Uniform velocity distribution with most of occupied area with velocity ≥ 0.25 m/s

Temperature results – Optimized design (Check-in hall)

Uniform temperature distribution with occupied area at $24\pm 1 \circ C$

Design Optimization

Check-in Hall - Temperature and air flow velocity

Baseline Design: Temperature results

South

Design Option 1: Change in diffuser angle and CFM

Diffuser flow discharge angle changed to 15 degrees to address high temperature regions

Baseline Design

Design Option 1

Design Option 1: Comparison with Baseline Design

Design Option 2: Change in interior arch layout

No Glass panels near South Wall for better air flow distribution

Design Option 2: Arch layout change w.r.t Option1

Design Option -1

Design Option - 2

Design Option 2: Comparison with Design Option 1

Design Option -1

Design Option - 2

Design Option 3: Change in diffuser angles and CFM

Changed near South wall

Design Option -2

Design Option - 3

Design Option 3: Comparison with Design Option 2

Design Option 4: Revised CFM- South wall Jet Diffuser

Design Option 4: Comparison with Design Option 3

Hot spots (28-30°C) reduced and most of occupied area is within 24 ° C

Design Option - 4

Design Option 4: Effect of mixed convection

Design Option - 4 (Variable air properties)

Conclusions

Better HVAC designs using Autodesk CFD

The design of Check-in Hall of the airport has been optimized based on the flow and thermal results from Air conditioning analysis using Autodesk CFD. With the change in the diffuser angles and CFMs as well as using mixed convection, hot spots with temperatures greater than 31°C have been reduced to the design temperature limit of 24°C. The following results from Autodesk CFD Simulation provided insights into design adequacy:

- Air flow velocity values and pattern a measure of air quality and cooling
- Temperature values and distribution a measure of thermal comfort

Thus, air-conditioning analysis using Autodesk CFD led to the conclusion that the optimized HVAC design is adequate for thermal comfort in passenger terminal building of airport.

Thank you....
AUTODESK UNIVERSITY

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document.

© 2022 Autodesk. All rights reserved.