

CI123792

A Quick Start to AutoCAD 3D Solid Modeling

Dieter Schlaepfer Autodesk, Inc.

Learning Objectives

- Learn the basics of 3D solid modeling using only 9 commands.
- Become familiar with practical tips and techniques with real-life models.
- Learn the next steps for becoming proficient in 3D solid modeling.

Description

You will learn the basics of 3D solid modeling using only 9 essential commands. Included are practical techniques, tips, and caveats with real-life models.

My goal is to give you a solid introduction, demos, and a roadmap to 3D solid modeling that will make you functional with as few commands as possible, and avoid overwhelming you with information.

Speaker

Dieter Schlaepfer is a Principal Learning Experience Designer at Autodesk, creating AutoCAD documentation and training guides. In prior employment he provided on-site consultative CAD/CAM/CAE training to manufacturing and architecture firms. He has over 35 years of experience in the field, and specializes in 3D modeling, training, and technical writing.

Definitions for Context

Isometric drafting – illustrations in flat "2½ D"
Wireframe modeling – pipe cleaners
Surface modeling – paper thin
Mesh modeling – sculpting, smoothing chicken wire
Solid modeling – volume and mass

2D commands used in 3D modeling

Move, copy, rotate, mirror, erase Ortho mode and direct distance entry Polylines, circles, lines HELIX (spirals, springs, threads) BOUNDARY—creates 2D profiles

Tip: Create reference and construction geometry to reduce errors.

Tip: Causes of boundary fails:

Area is not fully enclosed Objects off screen, extreme zooms Super complex boundary Non-plan view

Inquiry, visibility, and controls

ID, DIST, PROPERTIES GROUP and UNGROUP for assemblies Isolate and Hide objects

Viewing in 3D

3DORBIT (3DO)

Perspective vs. orthographic Visual styles (VS) Options > Display tab > Colors (background) Quick: Shift + press mouse wheel

PLAN

XY plane of the current UCS Mechanical Design vs. Architectural conventions

The User Coordinate System

What is it? A sort of 3D T-square What's it for?

> Orientation - Construction plane for creating 2D objects Orthogonal directions - X, Y, Z for direct distance entry, Ortho mode Rotation axis - The Z axis is the "hinge" for rotation, right-hand rule

The essential options

3P (default) – Locates the XY construction plane ZA – Specifies the Z-axis for rotations W – Returns the UCS to be coincident with the World Coordinate System

UCSICON – Controls the display of the UCS icon

On + Origin for modeling (default) Off for screenshots

Tip: Turn off dynamic UCS by setting UCSDETECT = 0 [F6]

Tip: Enter UCS ZA, and UCS W (Enter) directly at the Command prompt

Profile Operations

EXTRUDE Direction

Select closed objects Rules for positive direction - Right-hand rule for rotation

- mouse + distance

EXTRUDE /Path

Profiles need to be aligned to path or use SWEEP Use 2D polyline paths for fillets

REVOLVE (axis)

Tip: Work in isometric views

Tip: Limit boundary complexity

Tip: Use EXTRUDE /Path with profile and helix to create threads

Tip: Use the FACETRES system variable to smooth facets

Tip: Set DELOBJ = 0 to retain profile geometry

Why? (1) Reference, (2) Revisions, and (3) Precision Keep profiles on separate reference layers Choose a distinctive color for profiles

Boolean operations

UNION **SUBTRACT INTERSECT**

2D Boolean operations

BOUNDARY REGION Use as profiles for extrude, revolve, etc.

Tip: Use a wireframe visual style for easy selection

Best practices and advice

- Learn with simple models, become comfortable with the 9 commands
- Use layers to manage visual complexity
- Create and retain 2D profiles (set DELOBJ to 0)
- Move and rotate 2D profiles and 3D objects into place
- Check and recheck distances and dimensions
- Limit the detail to what is justified for your goals
- Delay filleting to preserve sharp corners for measuring and locating
- Use GROUP to associate objects that you don't want to UNION
- Create blocks from repetitive objects to reduce DWG size
- Save a version of a model at each stage so you can revert
- 3D landscaping purchase and insert as blocks
- People outline or transparent extrusion

Next steps

- Submit feedback survey
- Download the class presentation, notes, and drawing files
- Review the presentation ASAP
- Create some simple models, try things with the 24 class models
- Review the <u>Further Study</u> section below . . .
- Explore the 3D Basics ribbon workspace
- Experiment and have fun!

Further Study

Viewing and Display

- ViewCube, LENSLENGTH (perspective view), CAMERA, TARGET, VISUALSTYLES (VS), PERSPECTIVE
- Transparency (0-90%) CETRANSPARENCY, set ByLayer or individually using the Properties palette by entering a value; use for glass windows and walls, "shadow" people but also note transparent materials for rendering
- Wireframe display controls: ISOLINES, VIEWRES, DISPSILH
- Rendered visual style display: FACETRES
- Sectioning: SLICE (3D trim), SECTION, SECTIONPLANE

3D Object Creation

• LOFT, INTERFERE, PRESSPULL, POLYSOLID, REGION with Booleans

UCS

- UCS X, Y, Z rotation (90 degrees), right-hand rotation rule (thumb=Z axis, fingers curl positive)
- Isometric dimensioning with the UCS

Editing

- ROTATE3D, MIRROR3D, ALIGN
- Subobject selection (Ctrl + select + right click options)
- Shell a 3D solid SOLIDEDIT /Body /Shell (remove faces that are not to be shelled)
- Separate noncontiguous 3D solids termed "lumps" (SOLIDEDIT /Body /seParate)
- Convert surfaces and meshes to solids: THICKEN, SURFSCULPT, CONVTOSOLID
- SOLIDHIST for retaining component solids

Analysis

- Massing studies, sun and shadow studies, wind studies
- MASSPROP, DIST, MEASUREGEOM Volume, centroid, moments of inertia, etc.
- AREA /Object Surface area, including any fully enclosed volumes
- FEM/FEA analysis

Output and Processing

- 2D drawings: FLATTEN, FLATSHOT, SOLVIEW, SOLDRAW, SOLPROF, Fusion 360, the AutoCAD Model Documentation feature set for mechanical design: VIEW* commands
- Rendering, materials: RENDER, MATERIALS, etc.
- EXPORT: STL (3D printing), SAT (CNC) output

List of Drawings

- 10 Kitchen.dwg a real-life kitchen remodel project, EXTRUDE profiles
- 20 Playscape.dwg a wireframe model for UCS practice
- 30 Glass.dwg the profile of a real-life wine glass, REVOLVE profile about centerline
- 31 Bike Rim.dwg a heavy duty bike rim design, REVOLVE profile about axel
- 32 Chair.dwg a chair design, EXTRUDE /Path or SWEEP objects along a path
- 40 Walkway a real-life walkway and driveway design, EXTRUDE and then UNION profiles, use MASSPROP to estimate concrete volume needed
- 41 Florette-S.dwg a real-life tip of an electric foil blade used in sport of fencing
- 42 Bowsight.dwg an old-fashioned bow sight bracket, EXTRUDE and then INTERSECT profiles
- 43 Roof.dwg a hip roof, EXTRUDE and INTERSECT profiles
- 44 Envelope.dwg an envelope of a building or part, EXTRUDE and INTERESECT three profiles
- 45 Box.dwg create a plastic box with draft angles, EXTRUDE and INTERSECT profiles
- 46 Eclipse.dwg a real-life model of a scoring machine used in the sport of fencing
- 50 Keyboards.dwg two keyboards with different levels of detail
- 51 Stairs.dwg two sets of stairs with different levels of detail
- 52 Interference.dwg HVAC duct meets brace, brace wins, INTERFERE
- 53 Arbor.dwg a real-life 2D drawing of an arbor design
- 54 Arbor Profiles.dwg profiles converted into plines and rotated into place
- 55 Arbor 3D.dwg 3D model of arbor done in pieces with EXTRUDE and INTERSECT
- 56 Deck a real-life deck design. Stress analysis performed by an architect before it was built
- 57 Interfere2.dwg estimated cut from the interference volume between a building footprint and a solid that was lofted using contour lines, LOFT and INTERFERE
- 58 Room 3 render.dwg a room to render, RENDER and MATERIALS
- 59 3D House.dwg a house to experiment with
- 60 Campus.dwg lots of experiments here, pan and zoom within 3DORBIT