

Working with the
Model Checker API
Version 4.1 – 02/04/2023

Working with the Model Checker Automation API 2

Getting started
The Model Checker API is designed to provide a simple system for automating the tasks

that the full UI version of Model Checker does. It is designed to read and set check

sets, local configurations, run checks, and get and save reports.

Model Checker uses XML-based checkset files to store the data needed to run a set of

checks and generate reports. These files can be created and modified using the Model

Checker Configurator tool. Each Revit model can have a single path to a checkset file

stored in its extensible storage. The Model Checker API has a CheckSet class that

represents a single checkset file. The CheckSet can collect the path to the XML checkset

file from the model’s extensible storage or simply be a valid path.

Model Checker can also save model specific preferences (such as what items are

checked and unchecked, user specific filter values, etc.) without needing to modify the

source. To do this, Model Checker uses RunState objects to store and retrieve the

model specific settings for a check set.

When running checks, a ReportRun object will be returned. This object represents a

single run of reports that was done and can contain reports for one or more models.

The ReportRun has a property that holds a collection of FileReport objects; each of

these represents all checks that were run on a single Revit file and possibly its links.

Project setup
To use the Model Checker API 2 dll files need to be referenced. They are Revit release

specific and can be found in the Model Checker installation folder that corresponds to

the Revit release:

1. BIT.ModelChecker.API.dll – This contains the core data model and classes that

do not require Revit interaction directly. The base namespace is

ADSK.BIT.ModelChecker.API and under that you will find basic data model and

most service classes.

2. BIT.ModelChecker.Revit.API.dll – This contains all API classes that require

direct Revit access. You will need to reference the version built to the Revit

version you wish to target. The base namespace is

ADSK.BIT.ModelChecker.Revit.API and under that you will find basic data

model and most service classes.

Working with the Model Checker Automation API 3

Configuration

Storing the checkset path

A model can store the path to the XML checkset file in its extensible storage. The API

manages this by creation a CheckSetLocationRepository for the document and then

storing the path. Paths can be valid URL, drive letter-based, or UNC path. The code for

this would look as follows:

var locationRepository = new CheckSetLocationRepository(doc);
locationRepository.SaveCheckSetLocation("http://mycompany.com/checksets/
someCheckset.xml");

Note that a transaction should NOT be created for this; Model Checker will create its

own transaction.

Getting a CheckSet

To run a check, there needs to be a CheckSet object which the Model Checker API can

successfully load from a disk or web-based path. To obtain the CheckSet object, create

a CheckSetService instance and call GetCheckSet, passing in the path of the check set

you wish to load. This will return the CheckSet object. Note that you will also need to

construct and pass a PrebuiltOptionsService to the CheckSetService constructor. This

is a simple parameterless constructor.

If the path to the checkset is known and not store in the Revit model’s extensible

storage, this is sufficient. To obtain the location of the checkset stored in the model, an

instance CheckSetLocationRepository must be created, using the document you wish

to call from. Then call GetCurrentCheckSetLocation() can be called to obtain the current

stored location. This may be null or empty if a path has not been saved in the model.

Obtaining a checkset file that is not stored in the model’s extensible storage by the

Model Checker:

CheckSet GetCurrentCheckSet(Document doc)
{

var checkSetPath =
"http://mycompany.com/checksets/someCheckset.xml";

var optionsService = new PreBuildOptionsService();
var service = new CheckSetService(optionsService);
return service.GetCheckSet(checkSetPath);

}

Getting the checkset location from the model and retrieving the check set object:

CheckSet GetCurrentCheckSet(Document doc)
{

var locationRepository = new CheckSetLocationRepository(doc);
var checkSetPath = locationRepository.GetCurrentCheckSetLocation();

http://mycompany.com/checksets/someCheckset.xml

Working with the Model Checker Automation API 4

if (string.IsNullOrEmpty(checkSetPath)) return null;

var optionsService = new PreBuildOptionsService();
var service = new CheckSetService(optionsService);
return service.GetCheckSet(checkSetPath);

}

Using the RunState

If the desire is to use the checkset in its default state stored in the XML, simply

creating the CheckSet object successfully is sufficient.

However, the Model Checker can save a local RunState object to the model which

stores the user’s settings for this checkset. This may be specific sections or individual

checks that have been turned off, or user input values for specific checks. To update

the check set to reflect this information, a RunState object must be created and applied

to the CheckSet.

To obtain the run state construct a RunStateRepository for the document and call

GetRunState(). This will give you the run state object. If no RunState is stored, null is

returned. Then use the static ‘Utility’ class to update the CheckSet with the values from

the RunState:

CheckSet GetCurrentCheckSet(Document doc)
{

var locationRepository = new CheckSetLocationRepository(doc);
var checkSetPath = locationRepository.GetCurrentCheckSetLocation();

if (string.IsNullOrEmpty(checkSetPath)) return null;

var optionsService = new PreBuildOptionsService();
var service = new CheckSetService(optionsService);
var checkSet = service.GetCheckSet(checkSetPath);

var runStateRepository = new RunStateRepository(doc);
var runState = runStateRepository.GetRunState();

if (runState != null)
{

Utility.SetCheckSetFromRunState(checkSet, runState);
}

return checkSet;

}

Working with the Model Checker Automation API 5

Running checks
Once a valid CheckSet object is created, the Model Checker API can run checks against

a Revit model. Running checks can be done in one of two ways, model by model, or in

batch. Both result in a ReportRun object that collects the results from the check(s) run

against the Revit files.

Batch checks

To mirror the functionality of the Model Checker UI, the BatchCheckRunner can be used

to run the same CheckSet against a collection of Revit models. This takes a simple set

of inputs and returns you a result object for the entire run as well as a list of errors

encountered (if any).

To construct a BatchCheckRunner object; you will need to pass in the Revit application

object.

Second, create a collection of FileCheckSetting objects; these are a simple structure

that stores the file path and a Boolean value indicating if linked models should be

checked as well.

Then call the RunChecks method on the check runner. Since error handling needs to be

automated for running checks against a potentially large list of Revit models, the

Model Checker will collect exceptions and RunChecks will return a List of them.

The ProgressChanged event can be used to be notified of progress updates in the run.

A batch run would look as follows:

ReportRun RunChecksAndGetReport(CheckSet checkSet, Application revitApp)
{

var optionsService = new PreBuildOptionsService();
var checkRunner = new BatchCheckRunner(revitApp);

var files = new List<FileCheckSetting>()
{

new FileCheckSetting(@"C:\Some\Path\model.rvt") {CheckLinks =
false}

};

checkRunner.ProgressChanged += progressData =>
{

// Do something to report progress
};

var run = checkRunner.RunChecks(files, checkSet, out var errors);

if (errors.Any())
{

// Do some error handling

Working with the Model Checker Automation API 6

}

return run;

}

Document checks

Alternately, individual documents can be checked. This requires that the model be open

but may afford more control.

To do a document check construct a DocumentCheckRunner object with the document

you wish to check. Then call RunChecks() with the proper arguments. Note that there

are some optional arguments on this method that allows the check to be added to an

existing ReportRun object.

Running a document check would look as follows:

ReportRun RunChecksAndGetReport(CheckSet checkSet, Document doc)
{

var optionsService = new PreBuildOptionsService();
var checkRunner = new DocumentCheckRunner(doc);

checkRunner.ProgressChanged += progressData =>
{

// Do something to report progress
};

var run = checkRunner.RunChecks(false, checkSet);

return run;

}

Working with the Model Checker Automation API 7

Saving and Exporting Results
Once a ReportRun object has been created, the data needs to be saved in some way.

There are three ways to deal with the ReportRun:

1. Save to the model

2. Export to HTML

3. Export to Excel

Save to the model

This will save the report data in the model’s extensible storage and it will be available

to the user as their “Last Run Report” accessible through the Model Checker UI. Saving

this does not require a transaction as Model Checker will create its own transaction.

However, the model will need to be saved before closing it or this data will not be

saved. Note that it is not recommended to save a ReportRun that holds reports for

multiple models to a single model this way.

Saving the report to the model is done through the ReportRunRepository object; code

for this option is as follows:

void SaveRunResult(ReportRun result, Document doc)
{

var optionsService = new PreBuildOptionsService();
var CheckSetService = new CheckSetService(optionsService);
var repository = new ReportRunRepository(doc, checkSetService);

repository.SaveRun(result);

}

Export to HTML

Results can be exported to an HTML file for archiving or analysis. To do so construct a

ResultExporterHtml object and export with the required options:

• ExportLocation is a user editable folder path. The Model Checker will create the

folder if needed, and if possible. In this folder a single or collection of HTML

report files are saved.

• ExportLists corresponds to the option in the Model Checker UI to ‘Export list

elements’ that will save the individual Revit elements that match to the checks.

void ExportRunResult(ReportRun result)
{

var exporter = new ResultExporterHtml();
var options = new ExportOptions()
{

ExportLocation = @"C:\Some\Export\Folder",
ExportLists = true

};
exporter.ExportReport(result, options);

}

Working with the Model Checker Automation API 8

Export to Excel

Like HTML, results can be exported to Excel using the ResultExporterExcel class. The

required options are:

• ExportLocation is the path to an Excel file. The Model Checker will create the

file if needed, and if possible. It will overwrite an Excel file that matches the

name. The Model Checker API will not confirm the file extension. It will throw

an exception if the ExportLocation is a folder path such as “C:\temp\myreport\”

but it will write a file if the ExportLocation could be identified as a file such as

“C:\temp\ myreport”.

• ExportLists corresponds to the option in the Model Checker UI to ‘Export list

elements’ that will save the individual Revit elements that match to the checks.

void ExportRunResult(ReportRun result)
{

var exporter = new ResultExporterExcel();
var options = new ExportOptions()
{

ExportLocation = @"C:\Some\Export\Folder\myfile.xlsx",
ExportLists = true

};
exporter.ExportReport(result, options);

}

